Extensions 1→N→G→Q→1 with N=C2 and Q=C23.19D4

Direct product G=N×Q with N=C2 and Q=C23.19D4
dρLabelID
C2×C23.19D464C2xC2^3.19D4128,1819


Non-split extensions G=N.Q with N=C2 and Q=C23.19D4
extensionφ:Q→Aut NdρLabelID
C2.1(C23.19D4) = C24.69D4central extension (φ=1)64C2.1(C2^3.19D4)128,557
C2.2(C23.19D4) = C24.71D4central extension (φ=1)64C2.2(C2^3.19D4)128,586
C2.3(C23.19D4) = C24.74D4central extension (φ=1)64C2.3(C2^3.19D4)128,607
C2.4(C23.19D4) = C4.Q810C4central extension (φ=1)128C2.4(C2^3.19D4)128,652
C2.5(C23.19D4) = C2.D85C4central extension (φ=1)128C2.5(C2^3.19D4)128,653
C2.6(C23.19D4) = D4⋊C4⋊C4central extension (φ=1)64C2.6(C2^3.19D4)128,657
C2.7(C23.19D4) = C4.67(C4×D4)central extension (φ=1)64C2.7(C2^3.19D4)128,658
C2.8(C23.19D4) = C24.83D4central stem extension (φ=1)64C2.8(C2^3.19D4)128,765
C2.9(C23.19D4) = C24.84D4central stem extension (φ=1)64C2.9(C2^3.19D4)128,766
C2.10(C23.19D4) = C428C4⋊C2central stem extension (φ=1)64C2.10(C2^3.19D4)128,805
C2.11(C23.19D4) = C24.88D4central stem extension (φ=1)64C2.11(C2^3.19D4)128,808
C2.12(C23.19D4) = C24.89D4central stem extension (φ=1)64C2.12(C2^3.19D4)128,809
C2.13(C23.19D4) = (C2×C8).24Q8central stem extension (φ=1)128C2.13(C2^3.19D4)128,817
C2.14(C23.19D4) = (C2×C8).168D4central stem extension (φ=1)64C2.14(C2^3.19D4)128,824
C2.15(C23.19D4) = C4⋊C4.Q8central stem extension (φ=1)128C2.15(C2^3.19D4)128,833

׿
×
𝔽